Firstly, you've got to remember that ZEAP is only about

34K long and that is pretty short as assemblers come. ZEAP
was designed to run in a NASCOM with the minimum (8K) expansion
possible, and because of this a few short cuts were taken.
The short cuts all concern what are known as 'assembler
directives' which are instructions to the assembler (not
program instructions to the Z80) to do certain things with certain
bytes of the program. For instance a 'defined byte directive'
(DEFB) , now this directive instructs the assembler to put the
byte you have defined into the program. So DEFB £1A means
put 1A into the program (the £ sign means the byte is expressed
in hexadecimal). The assembler will assemble it like this;
0C50 is the address by the way 0010 is the line number:

0OC50 1A 0010 DEFB £1A

Now for the short cut bit - suppose you have a string of defined
bytes, followed by an instruction, the assembler would assemble
them like this:-

0C50 1A 0010 DEFB £1A, £2C, £44, E£5F
0c54 3EILF 0020 LD A, £1F

Notice that ZEAP only displayed the first defined byte, but the
addresses worked out right. This is because ZEAP assembled
them, it just does not display them. Notice also the second
instruction, there is no space between the 3E and the 1F.
Remember, if you were typing that into a NASCOM, you would

have to put a space between the two.

The same point about defined bytes applies to defined words
(DEFW) and defined messages (DEFM) thus;

0C50 1A 0010 DEFB £1A, £2C, £44, £5F
0C54 350C 0020 DEFW £0C35, £0035, £0124
OC5A 54 0030 DEFM /THATS THE LOT/
0C67 3ELF 0040 LD A, E1F

0004 0050 DEFS 4

oceéeD 00 0060 NOP

Notice that with a defined space (DEFS) ZEAP simply put 0004 in
the address field, and advanced the address counter by four.

So the basic message is, when loading programs assembled on
ZEAP, watch the address counter.

Of course, lets not create a wrong impression, these short
cuts in the display only occur on the monitor screen or on a
printer, if you were using ZEAP yourself, these deficiences
need not cause problems, because you would ultimately assemble
the program to memory or tape, in which case these bytes would
be correctly assembled even though they are not displayed.




