

**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

THE “HACK’S” GUIDE TO THE
INNARDS OF THE XTAL BASIC 2.2

INTERPRETER

Copyright (C) A.J.Cornish,

Crystal Electronics, May 1981

*

**
“Abandon hope, all ye who enter here!”

TABLE OF CONTENTS

I. LIST OF Xtal BASIC 2.2 SUBROUTINES
1. ADDRESSES OF COMMANDS / FUNCTIONS 2
2. SCRATCH-PAD LOCATIONS 2
3. ENTRY POINTS TO Xtal BASIC 3
4. RECONFIGURING FOR EXTRA COMMANDS/FUNCTIONS 4
5. ERROR MESSAGES 4
6. USEFUL GENERAL-PURPOSE ROUTINES 5
7. INTERNAL PROGRAM LAYOUT 6
8. GENERAL-PURPOSE TEXT SCANNING ROUTINES 7

II. Xtal BASIC FLOATING-POINT SUBROUTINES

1. GENERAL 9
2. FLOATING-POINT FUNCTIONS 10
3. FLOATING-POINT OPERATORS 10
4. ADDITIONAL USEFUL ROUTINES 11
5. POLYNOMIAL EVALUATION 11

III. EXPRESSION EVALUATION IN Xtal BASIC

1. EXPRESSIONS AND INTEGER FUNCTIONS 13
2. ROUTINES TO PRODUCE NUMERIC RESULTS 14
3. TYPE CHECKING ROUTINES 15
4. STRING EXPRESSIONS 15

IV. STRINGS AND VARIABLES UNDER Xtal BASIC

1. DYNAMIC ALLOCATION OF STRING SPACE 17
2. INTERNAL STORAGE OF VARIABLES AND ARRAYS 18
3. ROUTINES FOR ACCESSING VARIABLES DIRECTLY 21

V. EXAMPLE COMMANDS AND FUNCTIONS

1. SWAP – EXCHANGE VARIABLES 22
2. MUL$ - STRING ‘MULTIPLICATION’ 23
3. EXTRA TRANSCENDENTAL FUNCTIONS 24

INDEX p.27

2.
I. LIST OF XTAL BASIC 2.2 SUBROUTINES AND ADDRESSES

In the EPROM version, which loads at E000 – FCFF, any addresses in the range
1000-2CFF should have an offset D000 added to them.

1. ADDRESSES OF COMMANDS AND FUNCTIONS

These are given in address order, i.e. the order in which they may be found within
the interpreter:

KBD 1285 INCH 128D ERR 1292 PI 1298
SPEED 12A6 NEW 140A CALL 1572 LIST 157E
FOR 1630 STOP 16FF END 1701 RESTORE 172D
CONT 1746 CLEAR 17B0 RUN 1812 GOSUB 181D
GOTO 182E POP 184C RETURN 1862 DATA 1885
REM 1887 LET 189A ON 18F0 IF 1953
PRINT 19B2 INPUT 1A56 READ 1A7E NEXT 1B2D
OR 1CAB AND 1CAC NOT 1D30 DIM 1D4A
SIZE 1ECD POS 1F01 DEF 1F08 FN 1F2A
STR$ 1F86 LEN 2157 ASC 2166 CHR$ 2177
LEFT$ 2187 RIGHT$ 21B6 MID$ 21BF VAL 21ED
INP 2212 OUT 221D WAIT 2223 PEEK 2260
POKE 2267 RND 2280 CMD$ 22FC CLOAD 232E
+ 23B8 - 23C8 * 24F9 / 254B
LOG 24BA SGN 2603 ABS 2619 INT 26C2
SQR 286E

�
 2877 EXP 28BB TAN 28FB

ATN 2910 COS 2938 SIN 293E CSAVE 2B3F
EDIT 2C00

2. SCRATCH-PAD LOCATIONS

RNDNO 0C80-0C83 Holds last random number generated by RND.
ERRNO 0C84 Number of last error generated.
ERRMOD 0C85 Current error mode (non-zero if ON ERR.. in force).
SPEED 0C86 Delay for VDU display.
COMMAX 0C87 For PRINTing in zones, gives largest column for which
 Xtal BASIC will try to find new zone.
HIMEM 0C88 Lower limit of available string space.
LNNO 0C8A Current line number.
TEXT 0C8C Pointer to start of BASIC text area.
PRTCOL 0C8E Current print column.
DIMFLG 0C8F Flag used in DIM and FNDVAR routines, to indicate
 If we are DIMensioning an array, or just accessing it.
TYPE 0C90 Type of expression being evaluated, 0=Number, 1=String.

3.
DATFLG 0C91 In COMPRSS, flag to show when in REM / DATA statements,
 so that characters after these are not checked for
 command / function strings.
TOPRAM 0C92 Topmost RAM location available to BASIC.
STRPTR 0C94 Pointer to end of list in STRLST.
STRLST 0C96-0C9F Storage for string sub-expressions
STKSAV 0CA0 Save SP at the start of each statement
CHAR 0CA2 Temporary string expression pointer.
CHRADR 0CA4 Address of temporary string.
STRBOT 0CA6 Pointer to bottom of used string space
PTR 0CA8 General-purpose pointer.
DATLN 0CAA Line number of current DATA statement
VTYPE 0CAC Variable / Array type for use in FNDVAR routine (1D53).
RETFLG 0CAD Flag used by RETURN statement.
RDFLAG 0CAE In READ / INPUT, flag to show which we are in (i.e, READ
 or INPUT statement).
TXTPTR 0CAF Save text pointer at start of statement.
EXPPTR 0CB1 General-purpose pointer used in expression evaluations.
LNNZ 0CB3 ‘Old line’ pointer.
TXTPZ 0CB5 ‘Old text’ pointer.
TXTUNF 0CB7 Pointer to end of program text.
VARPTR 0CB9 Pointer to end of simple variable area.
LOMEM 0CBB Pointer to end of array storage area.
DATPTR 0CBD Pointer to current position in current DATA statement.
FPA 0CBF-0CC2 Floating-Point Accumulator.
TEMP 0CC3 Location used in FP calculations.
PRTTXT 0CC4-0CD0 Text area for forming numbers before printing.
ERRLN 0CD1 Line number for location of ON ERR..routine.
 0CD3-0CD4 Spare (but RESERVED!) locations.
BUFFER 0CD5-0D34 Buffer for input lines.
 -0D64 Extended buffer for EDIT.
STACK 0E00 Top of stack space.

3. ENTRY POINTS FOR XTAL BASIC

 You already know the 1000, 1002 and 1004 entry points (called XBASIC,
XBAS1 and INIT respectively). Another one worth knowing is at 1355, or READY.
This is like XBAS1, except that the variable space is not cleared and the stack is left alone.
It is, in fact, the address to which execution is transferred after a STOP, END or LIST
statement.

4.

4. RECONFIGURING THE INTERPRETER FOR EXTRA COMMANDS / FUNCTIONS

 Locations 0C80-0C8E are copied from a TABLE at 1277, when Xtal BASIC is
initialised. Of particular interest here is location 1283 (HTEXT), or the ‘hard text’ pointer,
which is copied to 0C8C (TEXT). If we add user commands and / or functions to Xtal
BASIC, they may be added onto the top of the interpreter, and then HTEXT can be moved
to point to the next 256-byte block ABOVE the new routines. Then, whenever Xtal BASIC is
run up, the program text area will automatically start at this new position, and all of your
BASIC programs will obediently load themselves in the new spot, too! This therefore
provides a very easy and effective way of ‘Reconfiguring’ your interpreter.

5. ERROR MESSAGES

 These are handled by the sub-routine ERROR which is at 1319. The only register
which matters here is E, which contains the error number. This number determines which
error message will be displayed, as shown on the back page of the Xtal BASIC manual. The
contents of the other registers are immaterial, and it is not necessary to save any of
them before entering the routine.

 Three scratch-pad locations are of importance here:
ERRMOD 0C85 This is 0 for displaying normal error messages, 89 for the ON ERR
 GOTO .. mode, and 8DH for the ON ERR GOSUB .. mode. If we are in either
 of these latter two modes, the error message is not displayed, and execution
 transfers to location GOERR at 1927, which searches for the line number of
 the error handling routine.
ERRNO 0C84 This contains the error number of the last error that occurred, and is
 set whenever the ERROR routine is called. It is accessed when the function
 ERR is called.
ERRLN 0CD1 Contains the line number of the error handling routine for the ON
 ERR .. error modes.

 Entry points for individual error routines are also available (i.e, places where the
error number has simply been placed in the E register, and a jump made to ERROR), as
follows:

MEMFUL 12FE Mem Full SYNERR 1308 Syntax
CMDERR 130B Cmd DIVERR 130E Division
NXTERR 1311 Next DIMERR 1314 Dimension
UFNERR 1317 FN Defn QTYERR 1787 Qty
BRNERR 1847 Branch TYPERR 1B82 Type
RNGERR 1E49 Range TAPERR 2A76 Tape

5.
6. USEFUL GENERAL-PURPOSE ROUTINES

GETKEY 2ACC Input character from keyboard, returning character in A, and with the
 carry flag set if the character is the ‘CS’ (BREAK) code. In that case,
 A=00. No other registers are affected. Note that this routine actually
 WAITS for a keypress. Non-NASCOM users MAY need to modify this
 routine, since it refers to the cursor location (to blink it under NAS-SYS).
GETK 2B00 A special routine written specifically for the NASCOM, to allow for the
 slowness of the NASCOM keyboard scan. This just detects the ‘CS’ or
 ‘BS’ characters, for breaking into a program or LIST. It may be replaced
 by a jump to VKBD (2BF7) on systems other than NASCOM.
RDLN 1512 Prints the character in A, and then reads in a line at the keyboard,
 into the BUFFER starting at 0CD5. As each character is typed, it is
 echoed to the screen, with the exceptions that:
 ‘BS’ backspaces cursor and removes the last character from the buffer.
 ‘CS’ exits the routine with the carry flag set.
 ‘NL’ exits the routine with the carry flag reset, terminates the line in the buffer
 with a 00 byte, and leaves HL pointing to 0CD4 (BUFFER-1).
 No other control-characters are allowed, and characters will not print if
 the line length is 96 characters (the maximum).
Registers affected: A and HL.

PR 155C Print character in A register, to VDU or current output device. The side-
 effect of this is that the location PRTCOL, is adjusted to give the correct
 column on the screen/printer, for TABs, etc. In addition, a delay is
 imposed if the SPEED command has been used to slow down the print
 rate.
Registers affected: NONE, but user’s output routine MUST reset the carry flag.

CRLF 1A09 Prints CRLF, using PR.
CRLFZ 1A0E As for CRLF, except that no CRLF is printed if the cursor is already at
 column zero.
Registers affected: A, set to 0DH (or 00H if at column zero under CRLFZ).

PRM 2AF0 Prints the message immediately following the sub-routine call, terminated
 by having the MSB of the last character set. This means that all other
 character codes must have ASCII values in the range 00-7F. Example:
 To print ‘Hello there’ we have:-
 CD F0 2A 48 65 6C 6C 6F 20 74 78 75 72 E5

 H e l l o t h e r e

6.

Registers affected: Just the A register, which exits holding the last character printed (still
with top bit set). The routine returns at the address following that character in memory.

CPHLDE 1546 Compare HL and DE and return flags set as follows:

 Carry -- Set if HL<DE, reset if HL>=DE.

 Zero -- Set if HL=DE.

Registers affected: A.

LTRCHK 1759 Reads the character contained at (HL) into A, and tests to see if it is
 a letter in the range A - Z (i.e, a capital letter).
 Carry is Reset if it is a capital letter, and Set if it is any other
 character. No other registers are affected.

7. INTERNAL PROGRAM LAYOUT.
 Before describing the general-purpose text routines, it is helpful to consider the
way in which a program is stored within the interpreter. Many users will already know
that Xtal BASIC does not actually use a line as typed, but instead shortens each
reserved word into a unique single- or two-byte code. This speeds up program execution,
and also saves storage space. In addition, a null byte is appended to each line, so that
we have a delimiter between each line of text (i.e, each numbered line). The line number
is stored as a two-byte quantity (hexadecimal), and an additional two byte quantity is
stored, which points to the address of the following line in the text.

 To illustrate this point, consider the following line of program text, which, for the
sake of argument, is to be stored starting at address 2D01 in memory:

300 FOR I=0 TO 9: PRINT SQR(I): NEXT: END

A normal text editor would store this line in memory in the form of ASCII codes thus:

3 0 0 F O R I = 0 T O 9 : P R I N T S Q

33 30 30 20 46 4F 52 20 49 3D 30 20 54 4F 20 39 3A 20 50 52 49 4E 54 20 53 51

R (I) : N E X T : E N D (CR)

52 28 49 29 3A 20 4E 45 58 54 3A 45 4E 44 0D

 This would be abbreviated by Xtal BASIC, into the following form:

 300 FOR I = 0 TO 9 : PRINT SQR(I) : NEXT: END

1B 2D 2C 01 81 20 49 B0 30 20 A2 39 3A 20 98 20 B8 28 49 29 3A 20 82 3A 80 00

 Here, the first two bytes give the address of the next line (this is at 2D1B, as you
will find if you count, taking 2D01 as the address of the 1B byte) and the next pair gives
the line number (012C= 300). Finally, you will note that the spaces are significant, and
remain in the text. They make virtually no difference to the operating speed of Xtal
BASIC programs, and allow the user to lay out programs in the way that suits him/her.

7.

Removing them does, of course, save space, but this should be not be done at the
expense of readability unless absolutely necessary,

 Note that even ‘=’ is treated as a reserved word, although it has only one character
anyway. This is so that execution will be faster when scanning for relational operators
(including ‘<’ and ‘>’).

 The above format still applies if the line is the last in the program, since we always
indicate the end of the program text by means of a null pair, i.e, the last THREE bytes
of a Xtal BASIC program are 00. The pointer TXTUNF always points one ABOVE the last
byte.

8. GENERAL-PURPOSE TEXT SCANNING ROUTINES.

 In general, Xtal BASIC uses the HL register pair as the pointer to the current
position in the text. The following routines will then be found useful:

IGBLK 16D8 Increments HL, then scans the program text until the first non-space
 character is found. Note also IGBLKI (16D9), which does the same,
 except that HL. is not incremented first.

Registers affected: A contains the character found, and HL points to that character. Z
flag is set if at end of statement (i.e, null or ‘ :’ found). Carry set if numeric character
found (0-9).

TSTC 1551 Test the character pointed to by HL in the text, ensuring that it is the
 same as that immediately following the subroutine call. If it is not, give a
 SYNTAX ERROR. This is effectively a four-byte call, e.g, CD 51 15
 29 looks for a ‘)’ (e.g, to end an argument list in a function call).

Registers affected: A contains the character found, HL finishes up pointing to the next
non-blank character FOLLOWING the one tested. Note that we may also use this routine
to test for a reserved word.

TSTCOM 154C Special case of TSTC, tests for a comma ‘ ,’ , and thus CD 4C 15 is
 equivalent to CD 51 15 2C (but is one byte shorter!).

FNDLN 13EC Searches for the line in the program text given by DE, from the start of
 text. Returns with the following conditions:

Carry and Zero set: Line found, BC points to start of line, HL points to start of following
 line (or to 0000 if the line found is the last in the text). By ‘start of line’,
 we mean four bytes before the actual text in that line (see program
 example above).

Carry reset. Zero set: Line not found, and end of text reached. BC then points to the start
of the last line of text, and HL=0000.

8.

Carry and Zero reset: Line not found, but we have found a line with a number larger
than that searched, for, BC pointing to that line, and HL pointing to the next
 line (or 0000).

Other registers affected: A will be affected, but DE will remain unchanged.

NXTLN 13EF As for FNDLN above, but this time searches for the line given in
 DE from the current position in the text, given in HL.

COMPRSS 1449 Routine to take a line of text in the buffer starting at the location
 given in HL, and terminated by a 00 byte, and which generates
 the same line in the compressed format given above, in the input
 buffer (0CD5). Note that the new line is ALWAYS shorter than
 the original. In normal use, when entering a line of text into a
 program, the compressed line overlays the input line, since the
 pointer to the original text is always in front of that to the
 compressed text. In addition, the line number is not considered
 here, since HL is pointing at the next non-blank character after the
 line number (if one has been used). COMPRSS does NOT
 generate a compressed line number nor the pointer to the next
 line.

Registers affected: All. HL points to one byte before the start of the buffer (0CD4) on
exit, DE points to the last byte plus two in the compressed line, and C holds the number
of characters in the compressed line, plus four to take account of the space needed for
the line number and pointer.

--

9.

II. XTAL BASIC 2.2 FLOATING-POINT SUB-ROUTINES

1. GENERAL
 A floating-point number in Xtal BASIC 2.2 is stored in four consecutive bytes. There
are four bytes reserved within the scratch-pad, used for floating point calculations, called
the Floating-Point Accumulator (FPA), and this is at locations 0CBF-0CC2. A further
byte. 0CC3, called TEMP. is used by the f.p routines for storing temporary calculations
but. apart from that, only the registers and the stack are used for f.p calculations.

 The high byte of the four is the exponent (0CC2), which is a signed power of two.
Note that the sign bit is 0 if NEGATIVE, 1 if POSITIVE (for a reason which will become
apparent later). The lower 3 bytes form a signed mantissa, the top bit of the top byte
being the sign (this time 0 if POSITIVE, 1 if NEGATIVEI). The mantissa is a number
between 0 and 1, with the binary point coming above the top bit.

 If we let e = Exponent byte, and

 m= Mantissa bytes, we express any f.p number N as:

 N=(1 + m) * 2 � (e-1),

with the added convention that any number with a zero exponent is taken as 0.

Now we see why 1 is used for a positive sign on the exponent -- e=01 must represent
2 � (-128), and 0 is clearly smaller than this (not much!). Note that e=80 represents 2 � � -1),
or 0.5 up to 1 (depending on the value of m). The advantage of using this
convention for 0 is that we can initialise variables and arrays simply by filling them with
0' s (each element is then zero).

 This is still probably as clear as mud(!), so let’s have a few examples, to
illustrate the system:

Decimal number Hex (f.p) representation Remarks

0 00 00 00 00 Zero

1 81 00 00 00 2 � 0

2 82 00 00 00 2 � 1

3 82 40 00 00 1.5*2 � 1

-3 82 C0 00 00

3.141593 82 49 0F DB Pi

0.6931472 80 31 72 18 Ln(2)

65536 91 00 00 00 2 � 16

 The RANGE over which we can operate is determined by e, and is thus:

2 � (-128) < N < 2 � 127, which is 2.938736 * 10 � (-39) to 1.701412 * 10 � 38.

 The ACCURACY of calculations is determined by the length of m, which in this
case represents 1 part in 2 � 24, or an error of < 5.960464 * 10 � (-8), which is better
than 7 sig. figs. However, to try and account for rounding errors, we added one guard
digit, and so you will note that all numbers are printed to 6 sig. figs (even this does not

10.

ALWAYS account for ALL errors, and you will note, for instance, that 3 � 4 is displayed as
81.0001, and not 81, as it should be! This is mainly due to problem with conversion
from binary to decimal, as well as the accuracy of the method used for calculating
powers).

2. FLOATING-POINT FUNCTIONS
 The addresses of the single-argument f.p functions are as follows. In each case,
the argument is expected to be found in the FPA:

LOG 24BA EXP 28BB SQR 286E
SIN 293E COS 2938 TAN 28FB
ATN 2910 RND 2280 ABS 2619
SGN 2603 INT 26C2

Notes: COS is performed by the identity COS(X) = SIN(X + PI / 2)
 TAN is calculated as: TAN(X) = SIN(X) / COS(X)
 SQR is calculated as: SQR(X) = X � 0.5

3. FLOATING-POINT OPERATORS
 By ‘operators’ we mean those in which we are dealing with TWO f.p
quantities. In general, we do a calculation in the form a = b o a, where a = contents
of FPA, b = contents of top four bytes of stack, and o is the operation performed. On
the stack, the top pair of bytes represent the exponent (high byte) and top byte of
mantissa. For each operator, there is another entry point (given a suffix ‘1’), in which b
is stored in the BCDE registers. Here, B contains the exponent, C the high byte of the
mantissa, and DE the rest of the mantissa. We call the set of four registers used in this
way the Floating-Point Register (FPR). The result of any of these operations is, of
course, returned in the FPA.

ADD 23B8 ADD1 23CD SUB 23C8 SUB1 23CA
MULT 24F9 MULT1 24FB DIVIDE 254B DIV1 254D
POWER 2877 POWER1 2879 ADDN 23BF SUBN 23C4

Note: POWER is actually calculated as: X � Y - EXP (Y * LOG(X)), with the
convention that X � 0 = 1 for X>=0 and 0 � Y= 0 for Y>0, and X � Y is not defined for X<0
or for X=0 and Y<0.

 ADDN and SUBN are like ADD1 and SUB1, except that HL points to a memory
location at which b may be found, You can place a constant here, or even a temporary
result, if you wish. Xtal BASIC stores a large table of constants in the area 29AE - 2A21,
and here are some of the more useful ones:

11.

HALFPI 29AE Pi / 2 HALF 29B2 0.5
TWOPI 29CB Pi*2 QTR 29B6 0.25
ONE 29FD 1 NEGONE 2A1A -1

4. ADDITIONAL USEFUL ROUTINES
STKFPA 2625 Returns with the FPA on the stack, in the form shown above.
 Destroys the DE registers.

LDFPR 265F Copies the FPA to the FPR, leaving HL pointing to TEMP (0CC3).

STFPR 2635 Copies the FPR to the FPA, without affecting any registers.

HLTOFPA 2632 Copies the four bytes starting at (HL) into the FPR AND FPA,
 leaving HL pointing to the byte following the block of four.

HLTOFPR 2662 Copies the four bytes starting at (HL) into the FPR, leaving HL as
 above, but not affecting the FPA.

FPATOHL 263E Copies the FPA into the four bytes starting at (HL), leaving HL as
 above, DE pointing to TEMP, B=00 and A= exponent of FPA.

DETOHL 2641 As above, but copies the four bytes starting at (DE) to those
 starting at (HL).

CHKSGN 25F4 Test sign of FPA, returning A=00 if FPA=0, A=01 if FPA>0 and
 A=FF if FPA<0. This does not change any other registers.

CHGSGN 261D Changes the sign of the FPA, turning it from a positive to a
 negative number, or vice versa. This affects A and HL. Note
 also the ABS function (2619) which sets the sign to positive.

5. POLYNOMIAL EVALUATION
 Xtal BASIC uses routines called POLY and POLY1 to evaluate polynomials for the
transcendental functions LOG, EXP, SIN, and ATN. All of the others are derived from
these ‘big four’. Both of these functions use HL on entry to point to a table of coefficients,
and these are then used to form the required polynomial. The first byte of the table
gives the number of coefficients, and each coefficient then follows (highest order
coefficient first), stored in four bytes as usual. The result is, of course, returned in the
FPA. Now, let us assume that the FPA holds a number X on entry, and Y on exit
to / from these routines, and that there are n+1 coefficients C0-Cn:

POLY1 298E Returns an evaluation of a polynomial of the form:
 Y= C0 + C1* X + C2* X � 2 + C3* X � 3 + + Cn* X � n
 The table looks like this:

 n+1 Cn C3 C2 C1 C0
 HL points here on entry.

POLY 297F Returns an evaluation of a polynomial of the form:
 Y= C0* X+ C1* X � 3+C2* X � 5+ +Cn* X ��� 2*n+1),
 and the table looks the same as above.

All other registers may be affected by these routines.

12.

SINTAB 29BA LOGTAB 29CF ATNTAB 29DC EXPTAB 2A01 are tables used
within Xtal BASIC, but they wont look like they do in your standard mathematics books,
because we use a special method known as CHEBYSHEV economisation to calculate
these functions to the required degree of accuracy and the same degree of efficiency
over the whole range of values.

13.

III. EXPRESSIONS AND INTEGER FUNCTIONS

1. GENERAL
 This is all very fine, but how do we get a number, or, more important, a complicated
expression containing numbers, functions and operators, into the f.p format described
in the preceding paragraphs? In fact, there is a set of very powerful routines which are
available for just this purpose. In all of the following cases, HL points to the position in the
text where the expression is to be found and, unless otherwise stated, all register
contents may change:

EXPR 1B8B The general expression evaluation routine, for calculating both
 numeric AND string expressions. The numeric result (or string
 pointer in the case of string expressions) is simply returned in the
 FPA, and TYPE (0C90) contains the type of expression returned (0
 for numeric, 1 for string). The expression can be as simple or as
 complicated as desired, and may even contain logical or relational
 operators.

EXNMCK 1B77 As for EXPR, but only accepts a numeric expression, and returns
 ‘Type Error’, if a string expression is found.

PARNZ 1C36 As for EXPR, but expects the expression to be enclosed inside
 parenthesis (), returning ‘Syntax Error’ if not.

PARN 1B87 As for PARNZ, but only looks for a left bracket ‘ (‘ , so that more
 expressions can be evaluated, perhaps separated by commas (use
 TSTCOM (154C) to test for separating commas), finally finishing
 with a TSTC ‘)’ (CD 51 15 29) to test for the right bracket.

FCHNUM 26F3 Tests for a f.p number (NB, NOT an expression, just a numeric
 constant), leaving HL pointing to the first non-numeric text
 character. Examples of values accepted, by this routine are:
 1 2.34 -51.76548 (rounded to -51.7655)
 -1.23E-07
 The result is returned in the FPA.

GETNM 178C Like FCHNUM, but this time the number must be an integer in the
 range 0-65529, and ‘Syntax Error’ is returned if it is not in this
 range. The number is returned in DE, and HL again points to
 the first non-numeric character. This routine is mainly used for
 fetching line numbers in the text (e.g, after GOTO or GOSUB
 statements). This routine leaves BC unaffected.

14.

UEXINT 1761 As for EXNMCK, but this time makes the expression into an
 integer, which must be in the range -65535 to +65535, returning the
 result in DE, as a signed 16-bit quantity. Note that, due to the range
 allowed, equivalent positive and negative values may be used
 interchangeably, e.g, -65535 is equivalent to +1.

INTEXP 1769 As for UEXINT, but restricts the range to 0 to +65535.

I255 2250 Here, we restrict the range to 0 to +255, and the result is returned
 in A as well as DE (D=00, of course).

NOTES:
 In the last three routines, ‘Qty Error’ is returned if the number is not in the
correct range described.

 Some users may still have copies of Xtal BASIC 2.2 which restrict
integers to +/- 32767. If this is so, location 1776 should be modified from 90 to 91,
when it will be found that the extended range is then available.

2. ROUTINES TO PRODUCE NUMERIC RESULTS
 It is often necessary, after obtaining one or more numeric expressions and
doing some manipulation, to return a numeric result. If the result is an f.p number, there
is no problem -- we just return the result in the FPA. If we have an integer result, we can
use the following routines to return the result in the FPA suitably converted:

FORMNUM 1EED Converts a two-byte integer (-32768 to 32767) into an f.p
 number. The integer is stored in the A and B registers (high byte in
 A), and all of the other registers are affected.

FM1BYT 1F04 As above, but converts a one-byte integer (0-255) into an f.p
 number.

 You will probably have already noticed the methods given in the Xtal BASIC
manual for ending the user-defined function reserved words -- FNEND in the example
RAD(, and FNENDI in the example DEEK(, on page 22. These were added to Xtal
BASIC in order to make it easier for users to finish their own routines with a single jump,
but FNENDI simply uses FORMNUM, and then continues on into FNEND with the integer
value now sitting in the FPA.

15.

3. TYPE CHECKING ROUTINES
 There are three routines provided for checking the type of variable
returned by a sub-expression or expression:

NUMCHK 1B7A Ensures that the expression just evaluated is a number.

STRCHK 1B7B Ensures that the expression just evaluated is a string.

TYPMCH 1B7C Checks that the type of one expression matches another. This is
 done by making the carry flag represent the type of the first
 expression (Reset if numeric. Set if string).

 In all of these cases, we return a TYPE ERROR if the wrong type was
found, and the location TYPE (0C90) contains the type of the expression last
evaluated. Only the A register and flags are affected by these routines.

4. STRING EXPRESSIONS
 We already know that we may use EXPR to return the pointer to a string expression
in the first two bytes of the FPA (at 0CBF-0CC0). In order to process the string
correctly, we use the following routine:

FCHSTR 2126 This does a call to STRCHK (to ensure that the expression just
 evaluated was a string), and exits with HL pointing to the length
 byte of the string expression. It also checks to see whether the
 string was a ‘ temporary’ sub-expression. String sub-expressions
 are stored at from 0C96 to 0CA1, and. simply serve to stack, the
 pointers to strings which are created within an expression and then
 forgotten about when the expression has been completely
 evaluated. We use CHAR at 0CA2-0CA5 to store the current
 ‘ temporary string’ (for example, the result of concatenating several
 strings, which, until assigned to a variable, would have nowhere
 to keep its pointer).

Registers affected: Apart from HL, the contents of all of the registers are modified, but
their values are not important.

LEN1 215B If you want to use LEN, you should in fact use this routine, which
 calls FCHSTR, and then returns the length of the string in A. HL
 still points to the length byte. TYPE is set to 0, to indicate a numeric
 result, and so is D.

ASC0 216A Similarly, use this routine where you want to use ASC. This calls
 LEN1, returns the address of the start of the string in DE, and the
 first character in A. HL is left pointing to the LAST byte of the string
 pointer, not the first, as it was in the above two cases. See MUL$
 in chapter V for an example of its use.

16.

STRSPC 200C Creates space for a new string within the string space, the
 required space being given by A. All other registers are affected.
 If there is insufficient string apace, a ‘housecleaning’ operation is
 initiated, which removes all strings to which there is no longer a
 pointer (i.e, the string variable which was pointing to it has now
 been assigned to another string). DE is left pointing to the first byte
 of this free space, and STRBOT is lowered by the appropriate
 amount.

ASNSTR 1FAB As for STRSPC, but then assigns this string space to the
 ‘ temporary string accumulator’ (CHAR), writing the length to 0CA2,
 and the start address to 0CA4 (CHRADR). This is thus
 the routine to use if it is desired to create a string in a user-defined
 function, since it is now an easy matter to copy your string into this
 space, and then use STREND (see below).

Registers affected: All, but HL finishes pointing to CHAR, DE still points to the start of
the created space, and A contains its length.

STREND 1FD9 Sets the first two bytes of the FPA to the next position in the sub-
 expression list, and then moves the temporary string pointer from
 CHAR into that position, thus freeing CHAR for another string, if
 necessary. This provides the correct way to end a user-defined
 string function, and an example of its use is given in the MUL$
 function in chapter V.

 If the sub-expression list from 0C96 is full, a STR
 COMPLEX ERROR is returned. This is a rare occurrence, since
 the only types of string manipulation that occur do not require
 stacking (e.g, you DON’T need to do this:

 A$=”HELLO"+(A$+(B$+E$)). It is allowed, however, so we must
 allow for ‘ idiots’ within the programming fraternity! This routine
 also sets TYPE (0C90) to 1, indicating a string result.

Registers affected: All. This routine should never be called as a Sub-routine, since it
expects to find the text pointer on stack, and this will be found in HL at the end of the
routine. SO, ensure that the text pointer is immediately available on stack, and then
JUMP to this routine, when you use it!

--

17.

IV. STRINGS AND VARIABLES UNDER XTAL BASIC

1. DYNAMIC ALLOCATION OF STRING SPACE

 A string may have any length from 0 to 255 characters, or 0 to 255 bytes,
whereas a numeric variable occupies just 4 bytes, a fixed, length. In order to make
storage allocation more efficient, we therefore use a separate ‘string space’ area in
addition to the ‘variable space’. The variable space contains pointers to the various
strings used, while the string space contains the actual strings themselves. No
separators are needed within the string space to tell us where one string ends and the
next one starts, because the pointers contain both the start address and the length of the
string (this needs only 3 bytes, but we actually use 4 in order that string pointers
occupy the same space as numeric variables).

 When we DIMension a string array, we use up variable space in setting up the
pointers, but we do NOT at that stage use up any string space, since no strings have
actually been assigned. Of course, it is necessary to do a CLEAR N command
before the DIM statement, if N bytes of string space are required for later use.

 Even when a string is assigned, it may still not use up any string space, since the
string may actually be a part of the program, e.g:

 10 A$=”NAME” or 100 DATA JACK,JILL,HILL

In these cases, when the string assignment is made, no string space is used, the
pointer being made to point to the actual address within the program where the string
sits. In addition, if we assign another string variable to the same string, its pointer is
simply made to point to the same string, rather than create a duplicate string, and this
can save a good deal of space.

18.

2. INTERNAL STORAGE OF VARIABLES AND ARRAYS
 The Xtal BASIC memory map above the program end looks like this:

STRING SPACE

FREE AREA
(STRINGS)

FREE AREA
(VARIABLES
& ARRAYS)

ARRAYS

VARIABLES

TOPRAM (0C92)

STRBOT (0CA6)

HIMEM (0C88)

LOMEM (0CBB)

VARPTR (0CB9)

TXTUNF (0CB7)

 a. Storage of variables.
 Let us first look at the storage of variables, both string and numeric. Each string
and number, as it is defined in the program, is searched for in the list from (TXTUNF) to
(VARPTR). If it is not found, the list is extended by increasing VARPTR by six bytes
(and moving the arrays up six bytes, if necessary), and then inserting the following
information:

First two bytes: The first two characters of the variable name, in the order second byte
followed by first byte. In addition, the variable type is stored using the top bit of the
first byte stored, this being 1 if the variable is a string. We had better give some
examples:

A stores as: 00 41

AB stores as: 42 41

AB$ stores as: C2 41

XYZ$ stores as: D9 58

...and so on

Remaining four bytes: These contain the number or string, stored in the same manner
as they would be in the FPA, i.e. High byte is exponent, lower three are mantissa. In the
case of strings, the high pair give the start of the string it the string space area, while the
bottom byte actually gives the length of the string.

19.

 Here are some complete examples:

A=3 stores as: 00 41 00 00 40 82

XYZ$="hello" : D9 58 05 00 50 2D, where we are assuming that the
string "hello" if stored at 2D50.

 HOWEVER, if the variable does not exist, but appears on the RHS of an
assignment, or is part of an expression, Xtal BASIC does NOT create it in memory,
but instead returns zero, or a null string, as necessary.

 b). Storage of defined functions.

 There is one other type of ‘variable’, although it may not appear as such, and
that is the DEF FN function. Sere, the function is defined within the variable space just
as a numeric variable, except that the SECOND byte now has its top bit set (to
distinguish it from a numeric or string variable), and the other four bytes contain two
pointers. The first pointer gives the address within the program at which the expression
on the RHS of the DEF statement may be found, while the second gives the address
within the variable space at which the argument variable of the DEF statement may be
found. In this way, it is a reasonably quick matter, on the call of this function, to directly
stack and substitute the argument, and then evaluate the expression, without having to
do a long-winded search through the whole program for the required DEF statement.
Example: Suppose we have a DEF statement as the first line of a program, that the text
starts at 2D01, and the variable space at 3000:

 10 DEF FN HSN(X)=(EXP(X)-EXP(-X))/Z This is the Hyperbolic sine.

 This is at the address stored in the variable space.

 If the program is RUN, the variable space should look like this:

3000: 53 C8 10 2D 08 30 00 58 xx xx xx xx, where the xx’s contain some number.

 Note: This is the address of the CONTENTS of the argument.

 And here is the address of the expression shown above (as an
exercise, work it out and verify it!).

 Note that, if the argument variable name already exists (X in this case), that
variable will be used (we do not create a new one!), but its value is stacked away before
the function is evaluated.

20.

 c. Storage of arrays.
 An array is just an ordered set of variables, so, as we would expect, each
array element is stored in the same way as a numeric or string variable, in four bytes.
However, some extra overhead is needed to define the type and extent of the array, and
this is done as follows:

First two bytes: As for variables.

Bytes three and four: Give an offset to the start of the next array in memory.

Byte five: Gives the number of dimensions in the array. Let us call this number N.

Bytes six to 2*N+5: Pairs giving the size of each dimension in turn, used to calculate
the required offset to obtain a particular array element, and to ensure that an array
access is within the required bounds.

The remaining bytes: Contain the elements of the array.

 As this is rather complicated, let us have an example, of the array created
by means of the following DIM statement:

 10 DIM XY(22,5,4)

This is a three-dimensional array, containing a total of 23*6*5=690 elements
(remember, we count from zero in Xtal BASIC!). This should look like this:

 59 5B CF 0A 03 05 00 06 00 17 00 xx xxetc.

 Here are the three dimensional pairs.

 The number of dimensions.

 And this is the offset to the next array (or to the end of the list if
there are no more arrays).

 We calculate the offset as: <No. of elements>*4 + 2*N + 1, where the No of
elements is found by multiplying together all of the dimension pairs. Note that the
dimension pairs are stored in the opposite order to that in which they were given in the
DIM statement, and that the actual numbers stored are one greater than those given.
Note also that, in the case where we are not using a DIM statement, the dimension pairs
are each node equal to 000B (10 +1), and the number of dimensions worked out from the
number of expressions given in the subscripts.

 Finally, when an array is set up in the above manner, the space set aside for the
elements is filled with 00s which means that each element IS, effectively, set to zero (or
made to point to a null string, in the case of a string). Note that an array is set up, if it
does not exist, whichever side of an assignment it appears on, unlike variables (see a.
above).

21.

3. ROUTINES FOR ACCESSING VARIABLES DIRECTLY

 It is often necessary to access a numeric or string variable directly, rather than
allow any type of expression (e.g, the CSAVE@/CLOAD@ commands) and, indeed, to
return a SYNTAX ERROR if an expression is attempted instead of just a variable name.

FNDVAR 1D53 General routine for accessing variables, depending on value of
 VTYPE (0CAC).

 a. Simple variable or array element expected. VTYPE=0 on entry.

 DE points to the contents of the variable on return.

 b. Entire array expected. VTYPE=1 on entry.

 This is the case, examples of which are CSAVE@ and CLOAD@,
 in which we refer to the array as a whole, without any parentheses
 commands). On return, BC points to the location containing the no.
 of dimensions and DE contains the offset to the next array.

 c. Simple variable ONLY expected. VTYPE>1 on entry. Otherwise as for a.
 An example of this case is in the FOR statement, where we have a
 SYNTAX ERROR if the control variable is given as an array
 element. The routine itself does not actually return the error in this
 case -- it simply leaves HL pointing to the ‘ (‘ .

 In all of these cases, HL starts pointing to the first character of the
variable / array name, and finishes pointing to the first character AFTER the end of the
name. If this routine is called with VTYPE non-zero, you should make it zero again
sometime before returning from the routine in which you call FNDVAR.

--

22.

V. EXAMPLE COMMANDS/FUNCTIONS

 To round off our description of the workings of Xtal BASIC 2.2, source listings of
some extra commands / functions are given below, and we are sure that all of these will
be of considerable use in your own programs, as well as providing a better indication of
how to use the routines described in this booklet. In all cases, it is necessary to
relocate the routines, and they are all show starting at 0000.

1. SWAP

 This command is used to swap the contents of two variables of the same type, i.e,
two numeric variables or two string variables. The form of the command is:

 SWAP A,B or SWAP A$,B$

Array elements may appear as either one or both of the parameters. This command
obviates the need for an extra ‘dummy’ variable that is normally needed when doing
this, i.e, it replaces:

 T=A:A=B:B=T or T$=A$:A$=B$:B$=T$

 However, there is a more important advantage with strings; only the POINTERS
to the strings get swapped, so that no test is required for string space, and the strings
themselves are not moved at all. SWAP therefore saves an enormous amount of time
when used in a sort routine.

 ORG 0000 ; CHANGE TO WHERE YOU WANT IT!
0000: CD 53 1D SWAP CALL FNDVAR ; FIRST VARIABLE
 3A 90 0C LD A,(TYPE)
 D5 F5 PUSH DE,AF ; SAVE ADDR & TYPE
 CD 4C 15 CALL TSTCOM
 CD 53 1D CALL FNDVAR ; SECOND VARIABLE
 F1 POP AF
 E3 EX (SP),HL ; STACK TEXT PTR, GET
 1F RRA ; ADDR & TYPE OF 1st VAR
 3A 90 0C LD A,(TYPE)
 CD 7C 1B CALL TYPMCH ; CHECK THE TWO TYPES
 06 04 LD B,04
0019: 4E SWAP1 LD C,(HL) ; SWAP THE TWO VARIABLES
 1A LD A,(DE)
 77 LD (HL),A
 79 LD A,C
 12 LD (DE),A
 23 INC HL
 13 INC DE
 10 F7 DJNZ SWAP1

23.

 E1 POP HL ; RESTORE TEXT PTR & RETURN
 C9 RET

0024: ; SIZE 36 BYTES

2. MUL$(
 This is a string function, and is a good example because it illustrates how to fetch
both a numeric and string expression, and return a string result. MUL$ allows us to
create a string which is a multiple of another string,

e.g, PRINT MUL$(4,"Hello") would print HelloHelloHelloHello on the screen.

This is probably not the most usual mode of its use -- it is most useful for producing
repeating patterns, e.g, *************** or +--+--+--+--+--+--+--+--+

(done by PRINT MUL$ (15,"*") and PRINT MUL$(8,"+— ");"+" respectively).

 Of course, either or both parameters may be complete expressions, so this is
quite a powerful function to use.

 If the resulting string is longer than 255 characters, a STR OVFL ERROR is
returned, and a QTY ERROR is returned if the numeric expression is negative or greater
than 255. A null string expression is not allowed, although a null result CAN be returned.

 Note the use of the integer multiply routine here: this is provided partly in the
interests of efficiency, and partly because it is quite a useful routine to have available --
there is no such routine in Xtal BASIC at present.

 ORG 0000
0000: E1 MUL$(POP HL
 23 INC HL
 CD 50 22 CALL I255 ; GET MULTIPLIER
 08 EX AF,AF’
 CD 4C 15 CALL TSTCOM
 CD 8B 1B CALL EXPR ; GET STRING EXPRESSION
 CD 51 15 29 CALL TSTC ‘)’ ; CHECK FOR CLOSING BRACKET OF
0010: E5 PUSH HL ; FUNCTION, AND STACK TEXT PTR
 CD 6A 21 CALL ASC0
 D5 PUSH DE ; GET ADDR OF STRING START IN
 2B DEC HL ; DE, THEN GET HL BACK TO LEN
 2B DEC HL ; BYTE OF POINTER.
 2B DEC HL
 6E LD L,(HL) ; GET LENGTH IN L
 08 EX AF, AF’
 67 LD H,A ; AND GET BACK MULTIPLIER IN H
 E5 PUSH HL
 CD 3E 00 CALL IMULT ; HL=H*L
 24 INC H

24.

0020: 25 DEC H ; ENSURE H=0 (NEW LENGTH ,<256)
 1E 0F LD E, 0F
 C2 19 13 JP NZ,ERROR ; ‘Str Ovfl Error’
 7D LD A,L
 CD AB 1F CALL ASNSTR ; CREATE NEW STRING
 C1 E1 POP BC,HL
 78 LD A,B
 B7 OR A
 28 0B JR Z, MUL2 ; IF NEW STRING NULL, DONE
 06 00 LD B,00
0032: C5 E5 MUL1 PUSH BC,HL
 ED B0 LDIR ; KEEP COPYING OLD STRING INTO
 E1 C1 POP HL,BC ; NEW ONE
 3D DEC A
 20 F7 JR NZ, MUL1
003B: C3 D9 1F MUL2 JP STREND ; RETURN STRING RESULT (NB,
 ; TEXT PTR STILL STACKED
003E: C5 D5 IMULT PUSH BC,DE ; SUBROUTINE TO MULTIPLY H,L
 EB EX HL,DE ; RETURNING RESULT IN HL
 7A LD A,D
 21 00 00 LD HL,0000
 54 LD D,H
 06 08 LD B,08
 29 IMUL1 ADD HL,HL
 87 ADD A
 30 01 JR NC, IMUL2
 19 ADD HL,DE
 10 F9 IMUL2 DJNZ IMUL1
 D1 C1 POP DE,BC
 C9 RET
0052: ; SIZE 82 BYTES

3. EXTRA TRANSCENDENTAL FUNCTIONS
 By using mathematical identities, we can easily obtain a host of extra functions,
with no great use of memory. The advantage of having them done in this way is that we
can save time which would otherwise be wasted in scanning text, e.g, it is much better to
do TAN(X) than to do SIN(X)/COS(X).

 The following identities are employed:

ASN(X)=ATN(X / SQR(1-X*X)) arcsin(x)

ACS(X)=(PI / 2)-ASN(X) arccos(x)

25.

HCS(X)=(EXP(X)+EXP(-X))/2 cosh(x)

HSN(X)=(EXP(X)-EXP(-X))/2 sinh(x)

HTN(X)=1-2 / (EXP(X*2)+1)) tanh(x)

 Although HTN(X) could be done as HSN(X) / HCS(X), we need only do 1 call of
EXP by the method adopted, rather than the four needed otherwise.

Some more useful routines are included here, and are explained as follows:

 ORG 0000
0000: E1 TFN POP HL ; ROUTINE TO EVALUATE THE
 E3 EX (SP),HL ; EXPRESSIONS BETWEEN THE
 23 INC HL ; BRACKETS, FOR USER-DEFINED
 CD 77 1B CALL EXNMCK ; FUNCTIONS.
 11 AA 2B LD DE, FNEND ; WILL EVENTUALLY RETURN
 E3 EX HL,(SP) ; FNEND
 D5 PUSH DE
 E9 JP (HL) ; JUMP TO RETURN ADDRESS

000C: CD 00 00 ASN(CALL TFN ; ASN(X)
000F: CD 25 26 ASN1 CALL STKFPA ; STACK X
 CD 5F 26 CALL LDFPR
 CD FB 24 CALL MULT1 ; X � 2
 21 FD 29 LD HL,ONE
 CD C4 23 CALL SUBN ;1-X � 2
 CD 6E 28 CALL SQR ; SQR(1-X � 2)
 C1 D1 POP BC,DE ; UNSTACK X
 3A C2 0C LD A, (FPA+3) ; SPECIAL CASE FOR ASN(1)=PI / 2!
 B7 OR A
 28 0C JR Z, ACS2
 CD 4D 25 CALL DIV1 ; X / SQR(1-X � 2)
 C3 10 29 JP ATN ; ATN(X / SQR(1-X � 2))

002F: CD 00 00 ACS(CALL TFN
 CD 0D 00 ACS1 CALL ASN1
 21 AE 29 ACS2 LD HL,HALFPI
 C3 C4 23 JP SUBN ; PI / 2 –ASN(X)

003B: CD 00 00 HSN(CALL TFN
 CD 71 00 HSN1 CALL HSN2
 CD CA 23 CALL SUB1 ; EXP(X)-EXP(-X)
0044: 21 C2 0C HALVE LD HL,FPA+3 ; DIVIDE-BY-2 BY JUST
 7E LD A,(HL) ; DECREMENTING EXPONENT
 B7 OR A

26.

 C8 RET Z ; NOT IF FPA=0
 35 DEC (HL)
 C9 RET

004C: CD 00 00 HCS(CALL TFN
 CD 71 00 HCS1 CALL HSN2
 CD CD 23 CALL ADD1 ; EXP(X)+EXP(-X)
 18 ED JR HALVE

0057: CD 00 00 HTN CALL TFN
 CD 85 00 HTN1 CALL DOUBLE ; X*2
 CD BB 28 CALL EXP ; EXP(X*2)
 21 FD 29 LD HL,ONE
 E5 PUSH HL
 CD BF 23 CALL ADDN ; 1+EXP(X*2)
 CD 7D 00 CALL RECIP ; 1/(1+EXP(X*2))
 CD 85 00 CALL DOUBLE ; 2/(1+EXP(X*2))
 E1 POP HL
 CD C4 23 JP SUBN ; 1-2/(1+EXP(X*2))

0071: CD BB 28 HSN2 CALL EXP ; GET EXP(X) AND EXP(-X)
 CD 25 26 CALL STKFPA
 CD 7D 00 CALL RECIP ; DO EXP(-X) AS 1 / (EXP(X)
 C1 D1 POP BC,DE
 C9 RET

007D: 01 00 81 RECIP LD BC,8100 ; CALCULATE RECIPRICAL
 51 LD D,C
 59 LD E,C ; FPR=1
 C3 4D 25 JP DIV1

0085: 21 C2 0C DOUBLE LD HL,FPA+3 ; DOUBLE FPA BY INCREMENTING
 7E LD A,(HL) ; EXPONENT
 B7 OR A
 C8 RZ ; NOT OF FPA=01
 34 INC (HL)
 C0 RNZ
 C3 66 24 JP OVFLO ; OVERFLOW IF EXPONENT=FF

0090: ; SIZE 144 BYTES

We hope that this set of samples will give the user many more ideas!

--

27.

INDEX OF ROUTINE & SCRATCH-PAD NAMES

ABS 2,10,11 DATA 2 FPA 3,9,10,11,13,14
ACS 24,25 DATFLG 3 15,18,25
ADD 2,10 DATLN 3 FPATOHL 11
ADD1 10,26 DATPTR 3 FPR 10,11
ADDN 10,26 DEEK 14
AND 2 DEF 2,19 GETK 5
ASC 2,15 DETOHL 11 GETKEY 5
ASC0 15 DIM 2,17,20 GOSUB 2,13
ASN 24,25 DIMERR 4 GOTO 2,13
ASNSTR 16,24 DIMFLG 2
ATN 2,10,11,24,25 DIMERR 4 HALF 11
ATNTAB 12 DIV1 10,25 HALFPI 11,25
 DIVERR 4 HALVE 25,26

BRNERR 4,5 DIVIDE 2,10 HCS 25,26
BUFFER 3,8 DOUBLE 26 HIMEM 2,18
 HLTOFPA 11
CALL 2 EDIT 2 HLTOFPR 11
CHAR 3,15,16 END 2 HSN 19,25,26
CHGSGN 11 ERR 2 HTEXT 4
CHKSGN 11 ERRLN 3,4 HTN 25,26
CHR$ 2 ERRMOD 2,4
CHRADR 3,16 ERRNO 2,4 I255 14,23
CLEAR 2,17 ERROR 4,24 IF 2
CLOAD 2 EXNMCK 13,14,25 IGBLK 7
CLOAD@ 21 EXP 2,10,19,25,26 IGBLK1 7
CMD$ 2 EXPPTR 3 IMULT 23,24
CMDERR 4 EXPR 13,15,23 INCH 2
COMMAX 2 EXPTAB 12 INP 2
COMPRSS 3,8 INPUT 2
CONT 2 FCHNUM 13 INT 2,10
COS 2,10,24 FCHSTR 15 INTEXP 14
CPHLDE 6 FM1BYT 14
CRLF 5 FN 2,19 KBD 2
CRLFZ 5 FNDLN 7,8
CSAVE 2 FNDVAR 2,21,22 LDFPR 11,25
CSAVE@ 21 FNEND 14,25 LEFT$ 2
 FNENDI 14 LEN 2,15
 FOR 2 LEN1 15
 FORMNUM 14 LET 2

28.

LIST 2 PRINT 2 STRLST 3
LNNO 2 PRM 5 STRPTR 3
LNNZ 3 PRTCOL 2,5 STRSPC 16
LOG 2,10,11 PRTTXT 3 SUB 2,10
LOGTAB 12 PTR 3 SUB1 10,25
LOMEM 3,18 SUBN 10,25
LTRCHK 6 QTR 11 SWAP 22
 QTYERR 4,23 SYNERR 4
MEMFUL 4
MID$ 2 RAD 14 TABLE 4
MUL$ 16,23 RDFLAG 3 TAN 2,10,11,24
MULT 2,10 RDLN 5 TAPERR 4
MULT1 10,25 READ 2 TEMP 3,10,11
 READY 3 TEXT 2,4
NEGONE 11 RECIP 26 TFN 25
NEW 2 REM 2 TOPRAM 3,18
NEXT 2 RESTORE 2 TSTC 7,23
NOT 2 RETURN 2 TSTCOM 7,13,22,23
NUMCHK 15 RETFLG 3 TWOPI 11
NXTERR 4 RIGHT$ 2 TXTPTR 3
NXTLN 8 RND 2,10 TXTPZ 3
 RNDNO 2 TXTUNF 3,18
ON 2 RNGERR 4 TYPE 2,13,15,22
ONE 11,25 RUN 2 TYPERR 4
OR 2 TYPMCH 15,22
OUT 2 SGN 2,10
OVFLO 4,26 SIN 2,10,11,24 UEXINT 14
 SINTAB 12 UFNERR 4
PARN 13 SIZE 2
PARNZ 13 SPEED 2,5 VAL 2
PEEK 2 SQR 2,10,24,25 VARPTR 3,18
PI 2,24,25 STACK 3 VKBD 5
POLY 11 STFPR 11 VTYPE 3,21
POLY1 11 STKFPA 11,25
POKE 2 STKSAV 3 WAIT 2
POP 2 STOP 2
POS 2 STR$ 2
POWER 2,10 STRBOT 3,16,18
POWER1 10 STRCHK 15
PR 5 STREND 16,24

