Simple Demonstration Progams Using NAS-SY¥S L.

FESSEXSEESOrSTrESS OSSR SRS XSS S SRESSSSSRISISRE

These programs set out to demonstrate
some of the features of HNAS-3YS5 1. Initially
the machine code instructions are explained In
detall (with the actual Instructlon mnemonics
bracketed), later the Instruction mnemonics
only will be used. These simpie demonstrations
do not try to cover the subject thoroughly but
are intended to give some indication as toc the
use of machine code assembly.

The first program is glven as an
example of how to overcome one of the siight
disadvantages of NAS-SYS. There are two ways
of printing a text string on the monitor
screen:

1) The normal way using the CRT routines;
'PRS' called using restart 28H which puts
the string which follows 1t on the
screen until! 'PRS' sees '00° which
terminates it. Or 'ROUT', called using
restart 30H, which prints the contents
of the A register on the screen (In
ASCII) each time it is called.
2) Copyling characters directly intoe the
video RAM.
In MNAS-5YS, the extensive screen editing
commands do not allow direct access to 1lne 16
{the top line of the monitor screen) using the
normal CRT routlnes. As the top 1line Is an
ideal 1locatlon for titles etc, addressing the
top 1ine must be achieved in some other
fashion.

Program 1

In this program a ¢title 1s copied
directly into the video RAM.

0c80 3E 0OC Load the accumulator with
the code to clear the
screen. (LD A, OCH)

nc82 F7 Call the routlne at 3DH

Jabelied '"ROUT'. (RST 30H)
pcs3s 21 8F oC Load the HL register palr
with the start address of
the tltle. {LD HL, BC8FH)

Load the DE register pair
with the start location on
the screen. (LD DE, 0BDGH)

ocss 11 D6 OB

pcad 01 11 00 Load the BC register palr
with the length of the

title. (LD BC, 0D01IH)

0c8C ED BD Copy the title uslng a copy
instruction. {LDIR}
QCBE 76 Stap the MNascom. (HALT}

NCBF 54 48 49 53 Title as an ASCII string.
oca3s 20 49 53 20

0C97 54 48 45 20

O0C9B 54 49 54 4

0C9F L5

The next five programs are designed to
be built up into cne continuous program.
Having entered the first program, and learned
how it works, the second program is added to
it, likewise with the third, etc.

Program 2

=====z=#S

Program 2 clears the screan and
lecads the title in similar way to program 1.
There is a difference, as this program does
not copy the title directly, instead, each
character is copled as before, but a delay
{called as a subroutine) is inserted between
each character. As the copy routine used Is
not automatic, checks have to he made to
determine when the title is fully loaded,

QCRO 3E OC LD A, OCH lLoad A with a.
clear screen symbol.

0C82 F7 RST 30H Print it using
restart labelled "ROUT'.

fC83 21 EE 0C LD HL, OCEEH Point HL to
the start of the titie.

6C86 11 DE 0B LD DE, OBDEH Point DE to

the screen location.

0C89 G1 05 00 LD BC, 0005H Load BC with
the length of the title.

DC&C ED AD LDl Copy one character,

0C3E CD Eu OC CALL OCE4H <Call the delay

subroutine.

0691 AF " XOR A Exclusive OR A to
clear it, making it 00.

gcoz B2 OREC ORC with A, IfC was
00, then the Z flag is set.

0C93 20 F7 JR NZ, -7 [If the Z flag
was not set, jump back to
OCBCH.

0C95 76 HALT Stop the Nascom.

The next part of program 2 Js the
delay subroutine, which makes use of the delay
in NAS-SYS, labelled 'RDEL', called by restart
38H, followed by the title.

Note that 'RDEL' is 2.5m5 when using a
4MHz clock, and 5m$ when using a ZMHz clock.
When using a 2MHz clock <{Nascom 1), the B
raglster should be lcaded with 10H {at
OCE7H) to halve the length of the delay loop.

Note that this next part does not
follew directly after the above, but must be
typed In before program 2 is used.

QCEAX F5 PUSH AF 5Save the contents
of the AF reglister pair.

0CE5 ¢C5 PUSH BC Save the contents
of the BC reglister pair.

) The contents of these registers must
be saved, as they contaln information to be
used later, which would otherwise be destroved
by the subroutine.

0CEBG QB 20 LD B, 20H 32 times the
delay is required, so as
a DJNZ loop is to be used
B is loaded with 32.

OCE8 FF RST 38H Caill the delay
routine labelled 'RDEL'.

0CE9 10 FD DJNZ -1 Decrement B by 1.
If B not zero, jump to
OCESH.

0CEB C1 POP BC Restore the BC

register pair.,

OCEC F1 POP AF Restore the AF
register palr.

QCED C2 RET Return from the
subroutinel

OCEE 41 20 42 4F The title as an ASCII
DCF2 58 string.

Program 3

In thls, the next part of the program
we propose to draw a vertical column of XTs
from a location near the bottom of the screen
up towards the top. To do this the 'ROUT!
routine will be used, having first located the
cursor at the desired position. A 'DJNZT loop
is set up which sequentlally prints an X,
moves the cursor up to the next line, then
prints a backspace.

Note that having printed a character,
the cursor is automatically moved on to the
next posltion. Hence the backspace.

This Iis not the most economic way to
construct this routine, but serves by way of
demonstration.

0c95 21 50 0B LD HL, 0B50H Point HL
to the cursor posttion

required on the screen.

LD (0C29H)Y, HL Lload HL
into the cursor stors, thus
altering the cursor on the
screen.

0co9s 22 2§ 0OC

This simple little routine may be used
at any time to locate the cursor at a desired
position on the screen.

QC9B 06 0D LD B, 0DH Load B with 14
v as 14 X's are required,
0c9D 3t 58 LD A, S8H Load A with the

code for an X.

0CSF F7 RST 30H Call the CRT
routine labelled TROUT' to
print the character.

DCAQ 3E 13 LD A, 13H Load A wlith the
code for a cursor "up move'.

0CA2 F7 RST 30R Print [t.

0CA3 3E 08 LD A, 084 Load A with the
code for a backspace.

QCAS F7 RST 30H Print it.

CALL OCE4H Call the delay
subroutine.

ocAs CD Eb 0C

0cA9 10 F2 DJNZ -12 Decrement B, if

not zero, jump to GCYSDH.

0CAB 76 HALT Stop the Nascom,

Program b

Program 4 uses the string print
routine called by restart 28H, this restart is
labelled "PRS'. The string to be printed is a
space followed by anm X. As the string is
enclosed within a DJNZ loop, and the cursor is
not manipulated by an 'up move' command as In
the last routine, a horizontal row of X's |Is
printed. Note that as the last screen commands
In the previous program were an ‘up move! and
a backspace, it is appropriate to print one
maore %X hefore entering the loop. Although this
program has much the same effect as the
previous program, it is much shorter because
of the use of the 'PRS' routine.

0CAB 3E 58 LD A, 58H Load A wlth the
code for an X.

GCAD F7 RST 30H Print it.

GCAE D6 10 LD B, 10H Load B with 16

as 16 X's are required.

0CB0 EF RST 28H Call the CRT
routine labelled 'PRS'.
ocBl 20 58 00 © ASCI11 codes for a space and

an X. The 00 tells 'PRS’
that this is the end of the
string.

0CB4 CD E4 OC CALL ODCE4H Call the delay

subroutine.

GCB7? 10 F7 OUNZ -7 Decrement B. |f B

not zero jump to 0CBOH.
QCBY9 76 HALT Stop the Nascom.
Program 5

=========

The next program is simiiar to program
3, |In fact this prints a second column of X's
at the end of the horizontal row of X's. HNo
axplanation will be given as this Iis so
similar to the cther program.

0CB% 06 0D LD B, G6H
0CBB 3E 1h LD A, 14H
0CBD F7 RST 30H
QCBE 3E 08 LD A, 0B8H
occo F7 R5T 30H
acCl 3E 58 LD A, 58H
0CC3 F7 RST 30H
0CcCh CD EX OC CALL 0QCE4H
acc? 10 F2 DJNZ =12
0CCY 76 HALT
Program

======a==

The last program in this group gives a
good demonstration of the use of the 'PRST
routine. In many ways this is slImilar to
program U. However, here, the line is printed
backwards, using the cursor 'left move'
command. Remember that in printing a character
the cursor moves one space to the right, hence
the three '1eft moves' to reach the correct
positlon for the next X,

The small routine at the end is a loop
calling the delay subroutine. Note that the

delay routine 1s alse a loop. As this Is a
loap with a lesser loop inside it, it [s known
as a 'nested Joop'. After the delay, the
orogram returns to the start and repeats
itself.

0cC9 EF RST 28H Call the routine
labelled 'PRS'..

NCCA 11 11 11 00 ASCI| string moving the
cursor back three places.

O0CCE 06 10 LD B, 10H toad B with 18
as 16 X's are required.

ocbd EF RST 28H

ocpl 58 11 11 11 ASCEH| string of an X then
ochs 0D three cursor 'left moves'.

DCD&E CD E4 OC CALL DCE4H Call delay.

ocp9 10 FS DJNZ -9

oCDE 06 10 LD B, 10H Load B with 16
to loop the delay 16 times.

ocpD €D EL OC CALL OCEXH Cali the delay.

OCEG 10 FB DJNZ -3

0CE2 18 9¢C JR -115 Jump back to start
of program, 0C80H.

The last four programs give a simple
demonstration of the use of NAS-SYS internal
subroutines, which are accessed from a table
of numbers called by the restart labelled
TSCAL'. To use an internal! subroutine the
appropriate restart code (in thls case 'DF"}
Iz followed by the table number. !t will be
noticed that some of the table numbers are
marked 'not normally used', this is because it
is usually easier to use the "Input/Output'
restarts {RIN and ROUT).

In the next two programs the Input
Output routines are not used (except to print
on the monitor screen in one Instance), and
the functions of 'RIN' and 'ROUT' are replaced
by Internal subroutine ¢alls from the table.

From now on, the operands of the
instruction mnemonics will be replaced by the
labels assigned to the operands; thus, RST 30H
will be refered +to by its label and will be
written RST ROUT, 1lkewise defined bytes
(DEFB) will be refered to by Tabel, DEFB SRLX
means the byte in the table which polnts to
the subroutine labeled SRLX.

Program 7

TZ=smaa=z===

This 1ttle program cutputs the
characters typed on the Kkeyboard to the
monitaor screen and the tape recorder. In this
way a tape record of what was typed s
preserved.

The first thing the program does is to
output a string of characters, which when
replaved put the Nascom in the 'H' mede. This
can be done, as, when the Nascom s waliting
for a key press, It is in fact scanning for an
Input from elther the keyhoard or the tape
recorder. Refer to the descriptlons of the
subroutines used.

ocso 21 8k 0C LD HL, TABLE Peint
HL at the table of
characters to be sent

out.
Qces 06 06 LD B, TABLE LENGTH
gc8s DF 6D RST SCAL, DEFEB SOUT

Cail S0UT and send
the characters.

Qcgy DF 7B LOOP RST SCAL, DEFB BLIKK
Call BLINK routine
to get a character.

0CR9 DF 6S RST SCAL, DEFB CRT

Call CRT te print, Tt.

0C8B DF 6F RST SCAL, DEFB SRLX

Call SRLX to send it

to the tape recorder.

0C8D 18 F8 JR LOOP Jump back to
LOOP.

OC8F OC 45 30 0D TABLE Table of characters
0C93 43 0D to be sent. ’

Now this routine is very Inefficlent,
as the tape recorder is running all the time,
and as minimum speed on the Nascom is about 30
characters a second, a-significant Improvement
in tape eaconomy could be achieved If the
message weare flrst stored in the memory then
sent to the tape recorder all at conce.

Program 8

This pregram sets B to account for the
characters to be sent before the start of the
text {(the prefix}, then points HL at the
location where the text is to start. It then
enters a loop, first saving HL (as this is
lost when getting a character), then checkling
if the character is an '@". [f an '@"' is found
then the program branches to 'END', If the
character is not an '@' then the character |is
printed on the screen. Next HL is restored,
and the c¢haracter saved 1in memory at the
locatlion "polnted to! by HL {iabelled
'BUFFERT). HL is Tncremented by one, and B is
incremented by one. The program then lcops
back for another character,

When an T'@' is encountered, the
program branches to TEND'. At thls linstant, HL
Is pointing to the the location of the '@' on
the screen {a function of ‘'BLINK'), and B
contains a count of the characters {plus 6 for
the prefix).

First HL is 'POPped" to 'throw away'
the PUSH at OCESH. !n this program there is no
real nesseccity for this, as HL 1s not
required, but as this would leave the stack
two down, it is both untidy, and, in a
different program, could lead to serious
problems. Therefore, the rule; |[f the stack
has been YPUSHed', and this is 1later not
requlred, "throw away' the stack.

The program then outputs a message to
the screen remindlng you to turn on the tape
recorder then waits for a Key press before
continuing. Routine 'KBD' was chosen for the
wait, as using "RIN' may cause a false start
because 'RIN' scans the tape Input as well as

the keyboard, and the tape recorder may well
output a few false characters as It starts up.

Having seen a key press, the routine
outputs the characters to the tape recorder
using TSOUT'. When the output is complete, the
program outputs a newline to the screen, and
returns to the monitor using subroutine
'"MRETT.

Note that this routine does not
contaln any checks as to the quantity of
characters stored, and as the program uses
'SOUT' which can only count up to 256, the
number of characters should not exceed this
ammount (mlnus 6 for the prefix).

0C80 06 06 LD B, TABLE LENGTH

0Cg2 21 BE OC LD HL, BUFFER Point
HL at text space.

0C8s E5 LOOP PUSH HL Save HL.

gc8e DF 7B RST S5CAL, DEFB BLIENK
Call BLINK to get a
character.

0C88 FE 40 CP 40H Compare with
the ASCII code for an
I@I__

ocsA 28 07 JR Z END [f Z flag
set, Jjump to END.

DC8C F7 RST ROUT Call RQUT
to print [t.

0csp E1 POP HL Restore HL

0C8E 77 LD {HL), A Save the
character at HL.

OCBF 23 INC HL Increment HL

0C90 04 ' INC B Increment B

0Cc91l 18 EF2 JR LOOP Go get
another character,

0C93 E1 END POF HL Throw away
stack.

0Cc9y EF RST PRS Print the

fallowing string.

GCe5 0D 54 75 72
0C39 BE 20 6F GE
oCal 20 72 85 B3
0CAl 6F 72 G4 65
0CA5 72 2E 00

The message.

0CA8 (€5 PUSH BC Save BC. .

0CA9 DF 61 [.OOFL RST SCAL, DEFE KBD
Scan the keyboard for
a key press.

OCAB 3D FC JR NG LOOP1 If no
key down, jump back
to LOOPI.

0CAD 1 PoOP BC Restore BC

0CAE 21 B7 0OC LD HL, TABLE Point

HL at the prefix.

acBl DF 6D RST SCAL, DEFB SOUT
Send to tape.

ac83 EF RST PRS Print the
fallowing string.

0CBL 0D 00 "newline’

0CB& DF 58 RST SCAL, DEFB MRET
Call MRET to return
to NAS-SYS,

QcB8 0C k5 340 0D TABLE The prefix.

ocBC 48 oD

OCBE BUFFER Text space.

Program 9

This next program gives an Iinsight
into decimal to binary conversions, and also
demonstrates the more normai use of the 'PRS',
'"BLINK' and 'ROUT' routines. The program also
uses another routine, TBZHEXT ({refer ta the
descriptlon of this routine}.

The preogram first puts cut a message
and then scans the keyboard for an input.
Having received an Input, the character is
displayed on the monitor, then converted from
ASCEl to decimal by the simple expedlent of
subtracting 304 from it.

In thls Instance no checks are made
to test the validity of the character, which
must be a decimal number, In practise this
sort of programmlng is very bad, as invalid
Inputs should be trapped, and a backspace
allowed for correcting the input in the event
of a mistake.

Having converted the number from ASCI]
to decimal, the number Is saved in B. The
routine is then repeated to get ancthetr number
which 1Is saved in C. The A register is then
cleared, and the B register multiplied by 2
which is done by shifting the binary number
left by one hit. The new number formed is
added to A. The B register Is now muitiplied
by 4 {two left shifts), and the result again
added to A. C is then added to A. The number
has now been converted to pure binary.

The contents of the A register are
saved whllst a further message s put out,
then restored, and A printed using 'BZHEX',
followed by a further message. The routine
then Jumps back to be repeated until
terminated by a RESET.

From now on the programs will be
printed in a more compact form Kknown as
assembley listing.

0Cc80 EF RST PRS
0C81 0C 00 Clear the screen.
oca3 EF LOOP RST PRS

0C8% 57 68 61 74 20 69 Message.
0C8A 73 20 74 68 65 20

0C90 6E 75 6D B2 65 72

0C96 20 3F 20 00

0C9A DF 7B RST SCAL, DEFB BLINK
Qcac F7 /ST ROUT Print it.
0C90 DB 30 SUB 20H Convert.
QC9F 47 LD B, A Save In B.

OCAD ©DF 7B RST SCAL, DEFB BLINK
0CA2 F7 RST ROUT Print it.
0CA3 D6 30 SUB 30H Convert.
0CA5 LF LD €, A Save in C.
0CA6 AF XOR A Clear A.

0CA7 CB 20 SLA B Shift left.
0CA9 80 ADD A, B Add to A,
OCAA CB 20 SLA B Shift left.
DCAC CB 20 SLA B Shift left.
QCAE 80 . ADD A, B Add to A.
DCAF 81 ADD A, C Add to A.
0CBO F5 PUSH AF Save AF.
OCBL EF RST PRS

OCB2 0D 49 73 20 DO Message,

0CB? F1 POF AF Restore AF.
OCB8 DF 68 RST SCAL, DEFB B2HEX
0CBA EF ‘RST PRS

OCBB 20 69 BE 20 48 L5 Message.
occl 58 2 OD OD 09
occe 18 BB JR LOOP

Program 10

Z=z=w======

This program is given as another easy
example of arithmetic routlnes. In this case
the two numbers are input to the B and C
registers in much the same way as program 9.
Hence little explanation Is given.

A is then cleared and by manipulation
of the bits in the B and C registers, a crude
form of binary multiplication is carried out,
the answer being accumulated In A. Further
manipulation is carried cut on the result to
convert it back iInto a decimal number. The
result s then printed using 'B2HEX' and the
program loops back to the beginning.

gcso EF RST PRS
0C82 oc 00 Clear the screen.
0C83 EF LODOP RST PRS

ocs8y 31 73 74 20 GE 75 Message,

pcgAa 6D 62 65 72 20 00

Ca0 DF 7B RST SCAL, DEFB BLINK
0c92 F7 RST ROUT

0C93 D6 30 SUB #30

0C95 L7 LD B, A

0C96 EF RST PRS

pc97 20 74 69 6D 65 73 Message.
0c9b 20 32 GE 64 20 BE
GCA3 75 BD 62 65 72 20

ODCA9 00

OCAA ODF 7B RST SCAL, DEFB BLINK
DCAC F7 RST ROUT

OCAD D6 30 SUB #30

O0CAF 4F LD C, A

The numbers are now saved in B and C.
A 1s then cleared, and bit 0 in C tested. If
the reslit is a 0, the proram jumps forward
and shifts B one to the left. If the result
was not zero, B is put intc A before the left
shift. The shiftlng to the left is equivalent
to adding 0's to the partial products In
ordInary declmal long muitiplication.

0CBD AF XO0R A To clear it.
OCB1 CB 41 BIT 0, C Test bit.
6CB3 28 01 JR Z L1 If 0, jump.
0OCB5 78 LD A, B

0CBE CB 20 L1 SLA B

Then the next bit in C is tested, and
depending on the result, the partial product

is added to A, the process is repeated until
a1l the bits in C (4 bits) are accounted for.

OCB8 CB 49 BIT 1, ¢ Test bit.
OCBA 28 01 JR Z LZ Jump if D.
OCEC 80 ADD A, B Add to A.
0CBD CB 20 12 SLA B Shift left.

OCBF CB 51 BIT 2, ¢ Test bit,
occl 28 01 JR 2 L3 Jump if 0.
0ccs 80 ADD A, B Add to A.
occy CB 26 L3 SLA B Shift left,

occe CB 59 B!T 3, C Test bit

0ccs 28 01 JR Z LY Jump tf 0.

OccA 80 ADD A, B Add to A.

The A register now contains the binary
result of the product of the B and C
registers. This now has to be converted back
into declimal!. This is done by successively
subtracting 10 (In decimal} from the number
and counting the number of 10's uptil a carry
is found. This partial result, which
represents the number of '10's' in the number,
then has 10 added back to it (as one teco many
10's ware subtracted In producing a negative
result) and is then shifted four places to the
left, and the remainder added te it, giving
the decimal representation in A. TfB2ZHEX" s
then used to print It.

pccs 06 Q0 Li LD B, & To clear it.
occD o4 L5 INC B Increase count,
0CCE DE DA SBC #0A Subtract 10,
ocDO 30 FB JR C LS |If no €,jump.
ocpz 05 DEC B Adjust count.
ocp3 CE DA ADC #DA Add 10.

0CD5 CB 20 S5LA B Shift left.
0CD? CB 20 SLA B Shift left.
ocbs CB 20 sLA B Shift ieft.
OCDB CB 20 SLA B shift left.
peoD 8o ADD A, B Add to A.
0CDE 3D DEC A Adjust count.

The A register now contalns the number
in decimal, which (s output to the screen by
using TBZHEX'.

" OCDF F5 PUSH AT . Save AF,
QCED0 EF RST PRS
0CE1 20 BS 73 2& 00 Message.
0CE6 F1 POP AF Restore AF.
OCE7 DF 68 RST SCAL, DEFB B2HEX
OCE9 EF RST PRS
OCEA 0D 0D 00 Message.
0CED C3 83 0C JP LOOP . Jump to

start.

Rememher, care must be taken, as some
of the routines modify the registers, and if
these are still required, the registers should
be saved.

It is hoped that the above éxamples
give some asslstance In the use of NAS-SYS
Internal routlnes to simplify machine code {or
assembly) programming. Almost ail the routines
accessible from the table may be treated as
modules, and the descriptions given elsewhere
should be adequate for an understanding of the
use of each module.

DRH 790821 Iss. 2.

